Best Javascript Machine Learning Libraries in 2024

Anom Warbhuvan
5 min read | Published on : Apr 04, 2023
Last Updated on : May 23, 2024





Table of Contents

In the past, programming and machine learning were two distinct domains with unique languages and tools. As machine learning is so much more math-heavy and technical than programming languages, it needed a specialized skill set for implementation.

However, the emergence of Javascript machine learning libraries changed the game. With these libraries, developers can bring machine learning capability into their web apps. Enabling you to build power intelligent applications with neural networks, train them on vast datasets, and make predictions and decisions within their Javascript code.

In this article, we will go through the different javascript libraries for Machine Learning (ML), Natural Language Programming (NLP), and JavaScript together.

1. TensorFlow.js

TensorFlow.js is an open-source library for building and training machine learning models in JavaScript. It provides a comprehensive set of tools for building and training machine learning models in the browser or in a JavaScript runtime environment.

TensorFlow.js supports a wide range of machine learning tasks, including image classification, language translation, and reinforcement learning. It can be used for tasks related to NLP, such as sentiment analysis, language translation, and text generation.

Model created with Tensorflow can recognize objects in images, handwritten characters, and faces in photos. Nowadays it is also being used to predict stock market trends, customer behavior, and disease outbreaks.

2. ML.js

With just a few lines of code and the comprehensive API provided by ML.js, developers can create and train machine learning models.Common machine learning tasks including clustering, regression, classification, and dimensionality reduction can be carried out with ML.js.

Additionally, this library has data-related capabilities that can be used to accomplish sophisticated machine learning tasks, like feature extraction, data visualisation, and data preprocessing.Recommendation systems, computer vision, and natural language processing are among the many fields in which ML.js finds usage. This library readily interacts with our current projects and has a readability focus. Additionally, ML.js is continuously developed and maintained by a community of researchers and developers.

Take Javascript debugging to the next level, with Zipy!

Sign up for free

3. Neuro.js

Neuro.js focuses on natural language processing and is useful for building chatbots and AI agents. Neural networks including feedforward, recurrent, and convolutional networks are trained by it.With Neuro.js, a neural network architecture may be defined through an easy-to-use API.

It is possible to change the number of layers, the number of neurons in each layer, the activation functions, and the loss functions.All things considered, Neuro.js is a strong and user-friendly toolkit suitable for both novice and expert users that wish to play around with machine learning in the web or Node.js.

4. Brain.js

Brain.js is used to create and train neural networks on Node.js or in browsers. It supports several different neural network topologies, such as feedforward networks, recurrent networks, and long and short term memory (LSTM) networks, and has an easy-to-use interface.Because it is cross-platform compatible, integrating it with a variety of development environments and platforms is simple.

Brain.js is appropriate for applications that need neural networks to be trained quickly and effectively. It is perfect for any real-time application, including online apps, game AI, and even apps that need low latency, because it can run in any browser or Node.js environment.

5. OpenCV.js

It comes with a number of potent tools and algorithms for handling and evaluating pictures and videos in a Node.js or browser-based environment. OpenCV.js can be used to handle tasks like optical flow analysis, object recognition, face detection, image filtering, and feature detection. Additionally supported are machine learning methods including vector machines, random forests, and decision trees.Applications on the client side as well as the server side can utilise OpenCV.js. To incorporate computer vision features into online apps, utilise its API.

6. ML5.js

ML5.js is used to train and use machine learning models within web browsers. TensorFlow-like machine learning tasks are supported by this library. A community-driven framework, ML5.js offers a thorough understanding of topics like data collection and ethical computing, making it appropriate for novices.When working in a Node.js environment, you can address supervised and unsupervised problems by adding your dependencies. Without starting from scratch, developers can use JavaScript ML frameworks in their projects. It facilitates the creative use of machine learning in fields including design, music, and generative art.

7. WebDNN

Deep neural networks can be run in a browser thanks to the open-source WebDNN deep learning framework. It has a cross-platform runtime engine that enables deep learning models to be executed on embedded devices, cellphones, laptops, and desktop computers.The ability of WebDNN to operate on pre-trained models such as Tensorflow, Keras, and PyTorch is one of its primary characteristics. A collection of APIs for loading and using converted deep learning models in web browsers is also included with WebDNN. WebDNN also has the advantage of supporting hardware acceleration. Deep learning models can run better by utilising hardware acceleration technologies like WebGL and WebGPU.

Take Javascript debugging to the next level, with Zipy!

Sign up for free

8. Synaptic.js

Synaptic is a lightweight and flexible JavaScript library for building neural networks. This library provides a fast and efficient implementation of neural networks. It allows you to train each specific neural network using tests such as the built-in Reber Grammar test, XOR solving, and distracted sequence recall task completion.

It is designed for users to easily create, combine, and reuse different types of neural network components. It also helps in building client-side predictive modelling and deploying models without a server. It can be used in educational settings to demonstrate the basic concepts of neural networks and machine learning.

9. Compromise

Compromise.js is a Node.js and browser-based natural language processing library. It provides a set of tools for parsing, comprehending, and manipulating English text. Similar to NLP.js, it also provides a plugin system that allows you to extend its functionality with your custom modules.

With Compromise, you can easily extract text information such as nouns, verbs, adjectives, dates, times, and addresses. Not just this, you can also carry out text operations like pluralization, capitalization, contraction or expansion. It has sentiment analysis, named entity recognition, part-of-speech tagging, and verb conjugation.

10. D3.js

D3.js stands for Data-Driven Documents. It enables developers to create dynamic and interactive web data visualizations by incorporating bar charts, line charts, scatterplots, and interactive maps. Data filtering, data binding, and data manipulation are some powerful tasks that you can accomplish with D3.js.

You can use it to create highly responsive dynamic visualizations by combining SVG (Scalable Vector Graphics) and HTML elements. D3.js also includes a variety of layout algorithms for creating more complex visualizations like hierarchical layouts and network graphs.

It is primarily used in data visualization in journalism, and for academic work.

11. Tracking.js

Tracking.js is a computer vision Javascript library that allows you to implement various CV algorithms in your browser.

It supports object and color tracking, feature detection, convolution, grayscale, image blur, and other algorithms. It is used to detect and track object faces in real-time, that too without any special hardware or software. Making it appropriate for a variety of applications, including augmented reality, motion detection, and interactive games and applications.

It also easily integrates with other machine learning and computer vision libraries like OpenCV.js and dlib.

12. ConvNet.js

ConvNet.js is a deep learning Javascript library for the browser. This ML library can solve neural networks using Javascript and supports popular network modules along with regression (L2) cost functions and classification (SVM/Softmax).  It is also completely browser dependent and has no dependency on software like GPU or compilers.

This trained neural network specifies images when working with convolutional networks. It supports an experimental reinforcement learning module built on Deep Q Learning.  It has fully connected layers which do not contain linearities. Making it the right machine learning library for neural network regression.

13. Danfo.js

Danfo.js is a Javascript machine learning library for web-based data analysis and manipulation. Data tools include data cleaning, transformation, and analysis, which are designed to be accessible and simple to use by developers.

It has several data structures that enable developers to interact with data in a way that is appropriate and familiar to users of well-known data analysis tools, such DataFrames and Series. It works on large datasets and can efficiently handle millions of rows, making it a data-intensive application.

Take Javascript debugging to the next level, with Zipy!

Sign up for free

14. JSFeat

JSFeat is a JavaScript Machine Learning library that provides image processing algorithms for computer vision in the browser. It is super efficient when it comes to performing tasks like feature detection, image filtering, and object recognition. Its performance is optimized for both desktop and mobile devices, and it can handle large images with high accuracy.

Real-time image processing and analysis tasks can be performed directly in the browser, with no server-side processing. JSFeat includes feature detection algorithms like ORB and FAST corner detection, and image filtering algorithms like edge detection and blur.

15. Keras.js

Keras.js enables pre-trained deep learning models to be deployed in a web browser or JavaScript environment and provides high-level APIs for building, training, and running machine learning models, similar to the Python-based Keras library. It runs efficiently in browsers with GPU support via WebGL.

This machine learning library is versatile and supports multiple deep learning models and architectures. It does bidirectional long short-term memory for Internet movie database sentiment classification. Many cabs and over-the-top service platforms like Uber and Netflix have started using Keras.js as a part of neural networking to enhance their user experience.

16. NLP.js

NLP.js is an open-source natural language processing library. It includes tools for tokenization, stemming, part-of-speech tagging, named entity recognition, sentiment analysis, and text classification. It has an API for integrating with other tools and services like voice assistants, chat platforms, and content management systems.

It uses machine learning to understand human language and create chatbots, virtual assistants, and other language-based Javascript applications. The library includes pre-trained models for a variety of languages, including English, Spanish, French, Italian, and Portuguese.

17. Mind.js

Mind.js is a Javascript machine learning library for machine learning, built on top of TensorFlow.js. It provides an interface for performing operations on arrays of data and allows developers to perform machine learning tasks like training and inference directly in the browser or on Node.js servers.

It uses matrix implementation for processing training data and uses it to make better predictions.Mind.js is used in robotics for autonomous navigation and object recognition, in healthcare for diagnosis and treatment recommendation, and in retail for object detection in images.

18. Sigma.js

Sigma.js is a Javascript machine learning library used in web browsers to display and manipulate interactive graphs and networks. It is widely used in academic research and data journalism because it provides a flexible and powerful platform for creating visualizations of complex networks.

You can generate graph visualizations such as node-link diagrams, matrix visualizations, and force-directed layouts. It supports many interactive features, including zooming and panning, node and edge highlighting, and edge bundling. It can be combined with other web technologies such as React, Angular, and Vue.js.

19. Face-api.js

Face-api.js detects faces in images and videos and identifies various facial attributes such as gender, age, and emotion. It also includes a powerful face recognition API for recognizing and identifying individuals in images and videos. It can be used for a variety of purposes, including security and surveillance systems, social media analytics, and interactive games.

Face-api.js is notable for its speed and accuracy. It is capable of real-time image and video processing, as well as handling large datasets of faces with high accuracy. It also has an easy-to-use API for incorporating face detection and recognition capabilities into your web applications.

Take Javascript debugging to the next level, with Zipy!

Sign up for free

20. Magneta.js

Magneta.js is a Javascript machine learning library built entirely with pre-trained interference models and supports GPU acceleration. It is a Google Brain project that explores the role of machine learning in the creation of art and music. Magneta.js provides a high-level API for generating musical sequences, melodies, and more using machine learning models.

MelodyRNN, DrumsRNN, and ImprovRNN are among the pre-trained models in the library that can be used to generate music. Magenta.js also includes visualization tools for the generated music and integrates with popular music software like Ableton Live and Max/MSP. It has a wide range of applications, ranging from music production to interactive art installations.

21. Webgazer.js

Webgazer.js is an eye-tracking Javascript library that uses a webcam to infer a visitor's eye gaze. Eye tracking can be used in your web applications for a variety of purposes, including user experience research to make games and applications interactive.

It works by calibrating the user's gaze position using a simple calibration procedure that requires the user to look at a series of dots on the screen. The library, once calibrated, can track the user's gaze position with high accuracy, even if the user moves their head or the camera angle changes.

22. Wink

Wink.js is a Javascript library that can help you with various NLP tasks. It includes text-related utilities, such as string manipulation, regular expressions, and data cleaning. Its modular architecture gives developers the freedom to pick and use only libraries and functionalities that they need for the project.

Wink.js has a versatile set of powerful natural language processing (NLP) and javascript ML libraries that can be used in chatbots, sentiment analysis tools, and text classifiers.

23. MachineLearn.js

MachineLearn.js  provides machine learning algorithms for SVM, linear models, decision trees, clustering, and other utilities. It is GPU accelerated and binds with native C++.

It provides APIs for running algorithms in the browser and comes with datasets like Boston, heart disease, Iris, and others.

24. Natural

Natural is a Node.js based natural language processing library that supports a wide range of operations including tokenization, stemming, tf-idf, position tagging, sentiment analysis, and spellchecks.

It is still in the testing phase until it is fully integrated with Wordnet.

Take Javascript debugging to the next level, with Zipy!

Sign up for free

Conclusion

In this article, we have shared some of the best Javascript machine learning libraries that can help  you visualize data, track eye movements, and perform many other complex tasks.

So supercharge your Javascript-based project with machine learning features, with these libraries. Choose the one that meets your project requirements and get started.

Happy Coding!

Wanna try Zipy?

Zipy provides you with full customer visibility without multiple back and forths between Customers, Customer Support and your Engineering teams.

The unified digital experience platform to drive growth with Product Analytics, Error Tracking, and Session Replay in one.

product hunt logo
G2 logoGDPR certificationSOC 2 Type 2
Zipy is GDPR and SOC2 Type II Compliant
© 2024 Zipy Inc. | All rights reserved
with
by folks just like you